Защитный газ при сварке – что нужно знать?
Содержание статьи:
Многие не понимают, насколько защитный газ значим для сварки. Стоит знать, что получить качественный шов без защитного газа — нереально. Ведь именно от него зависит задымлённость, геометрия сварочного шва и некоторые иные его характеристики.
Если защитный газ выбрать правильно, то это может сказаться на качестве, а также, глубине и скорости проплавления.
Чистые газы, применяемые для сварки
Среди чистых газов можно выделить углекислый газ, гелий, а также аргон. Во время выполнения сварки данные газы могут оказывать не только положительное, а и отрицательное воздействие.
Для аргонодуговой TIG сварки различных материалов и MIG сварки цветных металлов, в большинстве случаев применяется 100% аргон. Аргон обладает низкой теплопроводностью, а также потенциалом ионизации. Вследствие чего образуется низкая теплопередача на сварочную дугу с внешней стороны. Таким образом, формируется тонкий столб дуги.
При аргонодуговой TIG сварке цветных металлов используется одноатомный инертный газ — гелий. У него высокий потенциал ионизации и передача тепла, чем он и отличается от аргона. В итоге эффект в процессе сварки получается противоположный. Благодаря гелию формируется широкий сварочный шов и заметное смачивание по краю.
Для MAG сварки порошковой проволокой и MAG сварки короткой дугой используется преимущественно углекислый газ. Его допускается применять в чистом виде. Многим он подходит по цене, ведь углекислый газ имеет невысокую стоимость. Он подходит для сварки толстых металлов. Однако минус в том, что в результате образуются заметные брызги. Не допускается использование CO2 для сварки со струйным переносом.
Сварочные газы, выступающие в роли компонентов сварочной смеси газов
10% кислород в большинстве случаев применяется в процессе MIG-MAG сварки в качестве компонента сварочной смеси. За счет кислорода образуется широкий сварочный шов, обладающий не очень глубоким проплавлением и высокой проводимостью тепла на металле. Если использовать кислородно-аргоновые смеси, можно получить характерный профиль сварочного шва, в виде «шляпки гвоздя». Допускается использовать кислород вместе с аргоном и углекислым газом. Плюсы использования данной смеси в хорошей смачиваемости шва и возможности струйного переноса.
Водород добавляется в сварочную смесь в концентрации меньше 10%. Он применяется во время сварки аустенитной нержавеющей стали. Таким образом, увеличивается передача тепла и ликвидируется оксид. При использовании водорода формируется широкий сварочный шов на металле. Нельзя применять водород для сварки мартенситных и ферритных сталей, так как на них могут появиться трещины.
Что касается азота, то он редко используется для защиты. Зачастую он лишь увеличивает стойкость к ржавлению дуплексных сталей. От того, насколько правильно будет подобран газ для сварки, во многом зависит качество и геометрия сварочного шва.